Trigonometry

1. Simplify the expression: $\sin\left(\frac{\pi}{2} + x\right) + \cos(\pi + x)$

(A)0

(B) $2 \cos x$ (C) $-2 \cos x$ (D) $2 \sin x$

(E) NOTA

Solution: $\sin\left(\frac{\pi}{2} + x\right) + \cos(\pi + x) = \cos x - \cos x = 0$

Answer: (A)

2. If $\sin 2\theta = \frac{7}{9}$ and $0 < \theta < \frac{\pi}{2}$, what is $\sin \theta + \cos \theta$?

(A) $\frac{4}{3}$ (B) $\frac{7}{6}$ (C) $\frac{5}{4}$ (D) $\frac{2}{3}$

(E) NOTA

Solution: Since $\sin 2\theta = 2 \sin \theta \cos \theta = \frac{7}{9}$, we have

 $(\sin \theta + \cos \theta)^2 = 1 + 2\sin \theta \cos \theta = 1 + \frac{7}{9} = \frac{16}{9}$. Also, both $\sin \theta$ and $\cos \theta$ are positive, so $\sin \theta + \cos \theta = \frac{4}{3}$.

Answer: (A)

3. For a given angle θ , find the value of $\cos \theta$ if $\tan \theta = \frac{2}{\sqrt{5}}$ and $\sin \theta < 0$.

(A) $\frac{2}{3}$ (B) $-\frac{2}{3}$ (C) $\frac{\sqrt{5}}{3}$ (D) $-\frac{\sqrt{5}}{3}$ (E) NOTA

Solution: Since $\tan \theta$ is positive and $\sin \theta$ is negative, θ is an angle in the third quadrant, which produces the cosine value of it negative. Therefore, $\cos \theta = -\frac{\sqrt{5}}{3}$.

Answer: (D)

4. Which of the following parametric equations represent the elliptic equation $25(x-3)^2 + 4(y+1)^2 = 100?$

 $(A) x = 5\cos\theta + 3, y = 2\sin\theta - 1$

(B) $x = 5 \sin \theta - 3$, $y = 4 \cos \theta + 1$

(C) $x = 2\cos\theta + 3$, $y = 5\sin\theta - 1$

(D) $x = 2\cos\theta - 3, y = 5\sin\theta + 1$

(E) NOTA

Solution:
$$\frac{(x-3)^2}{4} + \frac{(y+1)^2}{25} = 1$$
, so let $\cos \theta = \frac{x-3}{2}$ and $\sin \theta = \frac{y+1}{5}$.

Answer: (C)

5. Which one of the following is positive value when the point P(-4,5) is on the terminal side of angle θ in standard position?

- (A) $\sin \theta \cos \theta$
- (B) $\csc \theta \tan \theta$
- (C) $\tan \theta \sin \theta$
- (D) $\sin \theta \sec \theta$

(E) NOTA

Solution: Since the angle θ is in the second quadrant, only $\sin \theta$ and $\csc \theta$ are positive and the others are negative. All values listed above are the products of positive and negative, so they are all negative.

Answer: (E)

6. Evaluate $\sum_{n=1}^{180} \cos n^{\circ}$.

- (B) 1
- (C) 2 (D) -1
- (E) NOTA

Solution: $\cos(1^\circ) = -\cos(179^\circ), \cos(2^\circ) = -\cos(178^\circ), \dots, \text{so}$

$$\sum_{n=1}^{180} \cos n^{\circ} = \cos(180^{\circ}) = -1.$$

Answer: (D)

7. If $\sin \theta$ and $\cos \theta$ are two roots of an equation $x^2 + \alpha x + b = 0$ for some angle θ , which of the following has to be always true?

- (A) $a^2 + 2b = -1$
- (B) $a^2 2b = 1$
- (C) $a^2 4b = 1$
- (D) $a^2 + 4b = -1$
- (E) NOTA

Solution: By Vieta's Formula $\sin \theta + \cos \theta = -a$ and $\sin \theta \cos \theta = b$, so

$$a^2 - 2b = (\sin\theta + \cos\theta)^2 - 2\sin\theta\cos\theta = 1$$

Answer: (B)

8. Which one of the following is equal to

$$\arcsin\left(\frac{1}{5}\right) + \arccos\left(\frac{1}{5}\right) + \arctan\left(\frac{1}{5}\right) + \operatorname{arccot}\left(\frac{1}{5}\right)$$
?

(A)	0

(B)
$$\frac{\pi}{2}$$

(D)
$$\frac{3\pi}{2}$$

(B) $\frac{\pi}{2}$ (C) π (D) $\frac{3\pi}{2}$ (E) NOTA

Solution: $\arcsin\left(\frac{1}{5}\right)$ and $\arccos\left(\frac{1}{5}\right)$ are complementary, and so are $\arctan\left(\frac{1}{5}\right)$ and $\operatorname{arccot}(\frac{1}{5})$.

Answer: (C)

9. Find the sum of all roots of the equation $\cos^2 x - \sin x = 1$ where $0 < x < 2\pi$.

$$(A)\frac{\pi}{2}$$

(C)
$$2\pi$$

(D)
$$\frac{5\pi}{2}$$

(B) π (C) 2π (D) $\frac{5\pi}{3}$ (E) NOTA

Solution: The equations is $\sin^2 x + \sin x = 0$. Either $\sin x = 0$ or $\sin x = -1$, so $x = \pi$ or $\frac{3\pi}{2}$.

Answer: (D)

10. Simplify $\arccos\left(\cos\frac{5\pi}{4}\right)$.

(A)
$$\frac{\pi}{4}$$

(B)
$$\frac{3\pi}{4}$$

$$(C)\frac{5\pi}{4}$$

(A)
$$\frac{\pi}{4}$$
 (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{4}$ (D) $-\frac{\pi}{4}$

(E) NOTA

Solution: $\arcsin\left(\cos\frac{5\pi}{4}\right) = \arccos\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}$.

Answer: (B)

11. Which one of the following trigonometric expression is identical to $\cos x \cdot (\sec x - \cos x)$?

- (A) $\cos^2 x$
- (B) $\sin^2 x$
- (C) $tan^2 x$
- (D) $\sin x \cos x$
- (E) NOTA

Solution: $\cos x (\sec x - \cos x) = \cos \left(\frac{1}{\cos x} - \cos x\right) = 1 - \cos^2 x = \sin^2 x$

Answer: (B)

12. When $\cos \theta = -\frac{5}{13}$, what is the value of $\cos 2\theta$?

(A) $\frac{25}{169}$ (B) $-\frac{50}{169}$ (C) $\frac{144}{169}$ (D) $-\frac{119}{169}$ (E) NOTA

$$(A)\frac{25}{169}$$

(B)
$$-\frac{50}{169}$$

(C)
$$\frac{144}{169}$$

(D)
$$-\frac{119}{169}$$

Solution: $\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 2\left(-\frac{5}{13}\right)^2 - 1 = -\frac{119}{169}$

Answer: (D)

	the of $\sin\left(2\arcsin\frac{1}{3}\right)$? (B) $\frac{4\sqrt{2}}{3}$		(D) $\frac{2}{1}$	(E) NOTA		
Solution: Let $\theta = \arcsin \frac{1}{3}$, then $\sin \theta = \frac{1}{3}$, and hence $\cos \theta = \frac{2\sqrt{2}}{3}$.						
Now $\sin 2\theta = 2$	$2\sin\theta\cos\theta = 2\cdot\frac{1}{2}\cdot\frac{2}{3}$	$\frac{\sqrt{2}}{2} = \frac{4\sqrt{2}}{2}$				

Answer: (C)

14. Given that
$$\sin x - \sin y = \frac{4}{5}$$
 and $\cos x + \cos y = \frac{3}{5}$, find $\cos(x + y)$.
(A) $\frac{3}{4}$ (B) $-\frac{3}{4}$ (C) $-\frac{1}{2}$ (D) $\frac{1}{2}$ (E) NOTA

Solution:
$$(\sin x - \sin y)^2 = 1 - 2\sin x \sin y = \frac{16}{25}$$
,
and $(\cos x + \cos y)^2 = 1 + 2\cos x \cos y = \frac{9}{25}$.

By combining the two equations $\cos(x + y) = \cos x \cos y - \sin x \sin y = -\frac{1}{2}$.

Answer: (C)

15. Which of the following angles should satisfy the inequality

$$2^{\cos x} + 2^{\sin x} < 2^{\cos x + \sin x} + 1$$
?

 $(A)36^{\circ}$

- B) 110° C) 292°
- D) 310°
- E) NOTA

Solution: The inequality yields $2^{\cos x} \cdot 2^{\sin x} - 2^{\cos x} - 2^{\sin x} + 1 > 0$ equivalent to $(2^{\cos x} - 1)(2^{\sin x} - 1) > 0$. Thus, either $\cos x > 0$ and $\sin x > 0$, or $\cos x < 0$ and $\sin x < 0$. Finding an angle located in the first or the third quadrant, the answer is (A).

Answer: (A)

- 16. Let $f(x) = \sin x$ and $g(x) = \cos x$ be two functions defined on $[0, \frac{\pi}{2}]$. Which of the four functions, f(f(x)), f(g(x)), g(f(x)), g(g(x)), are increasing over $[0, \frac{\pi}{2}]$?
 - (A) f(g(x)) and g(f(x))
 - (B) f(f(x)) and g(g(x))
 - (C) f(g(x)) and g(g(x))
 - (D) f(f(x)) and g(f(x))

(E) NOTA

Solution: Note that f(x) is increasing on $[0,\frac{\pi}{2}]$, and g(x) is decreasing on $[0,\frac{\pi}{2}]$ where ranges of both functions lie in $[0,\frac{\pi}{2}]$. Then the composition of an increasing function with an increasing function or the composition of a decreasing function with a decreasing function yields an increasing function on the given interval.

Answer: (B)

- 17. If $\tan \theta + \cot \theta = 5$, what is the value of $\csc^2 \theta + \sec^2 \theta$?
 - (A) 2
- (B) 5
- (C) 23
- (D) 25
- (E) NOTA

Solution: $\tan^2 \theta + 2 + \cot^2 \theta = \sec^2 \theta + \csc^2 \theta = 25$

Answer: (D)

18. When the solution set of the equation

 $[\sin x] + [2\sin x] + [3\sin x] = 1$ for x in $\left[0, \frac{\pi}{2}\right]$ is written as $\alpha \le x < \beta$,

what is $cos(\alpha + \beta)$?

- $(A)\frac{\sqrt{6}}{3} + \frac{1}{6}$ $(B)\frac{\sqrt{6}}{3} \frac{1}{6}$ $(C)\frac{\sqrt{6}}{6} + \frac{1}{3}$ $(D)\frac{\sqrt{6}}{6} \frac{1}{3}$ (E) NOTA

Solution: Note that $3 \sin x \ge 1$ and $2 \sin x < 1$. So $\frac{1}{3} \le \sin x < \frac{1}{2}$ or equivalently,

 $\arcsin \frac{1}{3} \le x < \frac{\pi}{6}$. Therefore $\alpha = \arcsin \frac{1}{3}$ and $\beta = \frac{\pi}{6}$.

 $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta = \frac{2\sqrt{2}}{3} \cdot \frac{\sqrt{3}}{2} - \frac{1}{3} \cdot \frac{1}{2} = \frac{\sqrt{6}}{3} - \frac{1}{6}$

Answer: (B)

- 19. Which of the following intervals can be a domain of the function $f(x) = \frac{1}{\sqrt{1-4\sin^2 x}}$?
 - (E) NOTA

- (A) $-\frac{\pi}{3} < x < \frac{\pi}{3}$ (B) $\frac{\pi}{3} < x < \frac{2\pi}{3}$ (C) $\frac{\pi}{6} < x < \frac{5\pi}{6}$ (D) $\frac{5\pi}{6} < x < \frac{7\pi}{6}$

Solution: $1 - 4\sin^2 x > 0$, so $-\frac{1}{2} < \sin x < \frac{1}{2}$. Solving the triangular inequality, we obtain solution sets like $-\frac{\pi}{6} < x < \frac{\pi}{6}$ or $\frac{5\pi}{6} < x < \frac{7\pi}{6}$.

Answer: (D)

- 20. Which pair of the following graphs coincide?
 - a) $y = 3 \sin 2\left(x \frac{\pi}{4}\right)$
 - b) $y = -3 \sin 2x$
 - c) $y = -3\cos 2x$
 - d) $y = 3\cos 2\left(x \frac{\pi}{4}\right)$
 - (A) a and b
- (B) b and c
- (C) c and d
- (D) a and c
- (E) NOTA

Solution: $3 \sin 2\left(x - \frac{\pi}{4}\right) = 3 \sin\left(2x - \frac{\pi}{2}\right) = 3 \sin(2x) \cos\left(\frac{\pi}{2}\right) - 3 \cos(2x) \sin\left(\frac{\pi}{2}\right) = -3 \cos(2x)$

Answer: (D)

- 21. Four points A, B, C, D lie on the circumference of a circle to form a quadrilateral. Let $\alpha, \beta, \gamma, \delta$ denote four interior angles of the quadrilateral associated with A, B, C, D, respectively. Which of the following is NOT true?
 - (A) $\cos \beta \cos \delta = \sin \beta \sin \delta + 1$
 - (B) $\sin \alpha \cos \gamma + \cos \alpha \sin \gamma = 0$
 - (C) $\sin^2 \alpha + \cos^2 \gamma = 1$
 - (D) $\cos \beta + \cos \delta = 0$
 - (E) NOTA

Solution: Note that $\alpha + \gamma = \pi$ and $\beta + \delta = \pi$. (C) and (D) follow from the fact immediately. And $\sin \alpha \cos \gamma + \cos \alpha \sin \gamma = \sin(\alpha + \gamma) = \sin \pi = 0$ which shows (B). However, $\cos \beta \cos \delta - \sin \beta \sin \delta = \cos(\beta + \delta) = \cos \pi = -1$.

Answer: (A)

- 22. What is $\cot 80^{\circ} \cot 55^{\circ} + \cot 80^{\circ} + \cot 55^{\circ}$?
 - (A)0
- (B) 1
- (C) 2
- (D) 3
- (E) NOTA

Solution: Since $\tan 135^{\circ} = \frac{\tan 55^{\circ} + \tan 80^{\circ}}{1 - \tan 55^{\circ} \tan 80^{\circ}} = -1$,

 $\tan 55^{\circ} + \tan 80^{\circ} = -1 + \tan 55^{\circ} \tan 80^{\circ}$. Now,

$$\cot 80^{\circ} \cot 55^{\circ} + \cot 80^{\circ} + \cot 55^{\circ} = \frac{1}{\tan 80^{\circ} \tan 55^{\circ}} + \frac{1}{\tan 80^{\circ}} + \frac{1}{\tan 80^{\circ}} + \frac{1}{\tan 55^{\circ}}$$
$$= \frac{1 + \tan 80^{\circ} + \tan 55^{\circ}}{\tan 80^{\circ} \tan 55^{\circ}} = \frac{1 + (-1 + \tan 80^{\circ} \tan 55^{\circ})}{\tan 80^{\circ} \tan 55^{\circ}} = 1$$

Answer: (B)

- 23. Let a_n be a sequence which represents the number of intersecting points of two graphs, $y = \sin x$ and $y = \cos 2nx$, over the open interval (0, 2π). Write the general term of the sequence a_n .
 - (A) 2n
- (B) 4n
- (C) 4n-1 (D) 8n-5
- (E) NOTA

Solution: The period of the graph of $y = \cos 2nx$ is $\frac{\pi}{n}$, so there are 2n complete cycle of cosine graphs between 0 and 2π . Two graphs of $y = \sin x$ and $y = \cos 2nx$ are tangent either at $x = \frac{\pi}{2}$ when n is even or at $x = \frac{3\pi}{2}$ when n is odd. Thus, the number of intersections is 2(2n) - 1.

Answer: (C)

24. Which of the following is equal to the infinite sum

 $\sin x + \sin x \cos^2 x + \sin x \cos^4 x + \sin x \cos^6 x + \cdots$ for x in $(0, \pi)$?

- (A) $\sin x$
- (B) $\csc x$
- (C) $\cos x$
- (D) $\cos x$

Solution:

$$\sin x + \sin x \cos^2 x + \sin x \cos^4 x + \sin x \cos^6 x + \dots = \frac{\sin x}{1 - \cos^2 x} = \frac{1}{\sin x} = \csc x$$

Answer: (B)

- 25. How many solutions to the equation $\cos^2 x 3\cos x 4 = 0$ are there on the open interval $(0, 2\pi)$?
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) NOTA

Solution: Since $\cos^2 x - 3\cos x - 4 = (\cos x - 4)(\cos x + 1) = 0$ and $-1 \le \cos x \le 1$ 1 for all x, we have $\cos x = -1$, and hence there is only one root, $x = \pi$ on the interval $(0, 2\pi).$

Answer: (A)

26. Aaron and Bill watch a drone flying 120 feet above the ground. The angle of the elevation from Aaron to the drone is 45° and from Bill to the drone is 60°. Assuming that the

positions of Aaron and Bill and the point of perpendicular projection from the drone to the ground form a line, how far are Aaron and Bill apart?

(A)
$$120 - 40\sqrt{3}$$

(B)
$$120 - 120\sqrt{3}$$

(C)
$$120 + \sqrt{3}$$

(D)
$$120\sqrt{3}$$

Solution: Let x be the distance from Aaron to Bill and let y be the distance from Bill to the projection point of the drone on the ground. Then x + y = 120 and $y = \frac{120}{\tan 60^{\circ}}$ $40\sqrt{3}$, and hence $x = 120 - 40\sqrt{3}$

Answer: (A)

27. Let F_n be the sequence with $F_1 = F_2 = 1$, $F_{n+2} = F_{n+1} + F_n$. Define a sequence, z_n , of complex numbers by $z_n = \cos F_n + i \sin F_n$. Which of the following is true for z_n ?

(A)
$$z_{n+2} = z_{n+1} + z_n$$

(B)
$$z_{n+1} = 2z_n$$

(C)
$$z_{n+2} = z_{n+1}z_n$$

(D)
$$z_n^2 = z_{2n}$$

Solution:

$$z_{n+2} = \cos F_{n+2} + i \sin F_{n+2} = \cos(F_{n+1} + F_n) + i \sin(F_{n+1} + F_n)$$

= $(\cos F_{n+1} + i \sin F_{n+1})(\cos F_n + i \sin F_n) = z_{n+1} z_n$

Answer: (C)

28. Let G_n be the sequence with $G_1 = 1$, $G_{n+1} = 2G_n$. Define a sequence, W_n , of complex numbers by $w_n = \cos G_n + i \sin G_n$. Which of the following is true for w_n ?

(A)
$$w_{n+2} = w_{n+1} + w_n$$

(B)
$$w_{n+1} = 2w_n$$

(C)
$$w_{n+2} = w_{n+1}w_n$$

(D)
$$w_n^2 = w_{2n}$$

(E) NOTA

Solution:
$$w_n^2 = (\cos G_n + i \sin G_n)^2 = \cos 2G_n + i \sin 2G_n = w_{n+1}$$

Answer: (D)

29. Which of the following is equal to $\cos \frac{2\pi}{5}$?

$$(A) \, \frac{\sqrt{5}+1}{4}$$

(B)
$$\frac{\sqrt{5}-1}{4}$$

(A)
$$\frac{\sqrt{5}+1}{4}$$
 (B) $\frac{\sqrt{5}-1}{4}$ (C) $\frac{\sqrt{6}+\sqrt{2}}{4}$ (D) $\frac{\sqrt{6}-\sqrt{2}}{4}$ (E) NOTA

$$(D) \frac{\sqrt{6} - \sqrt{2}}{4}$$

(Solution) Let $\theta = \frac{2\pi}{5}$, then $5\theta = 2\pi$. Since $\sin 3\theta = \sin(2\pi - 2\theta) = \sin 2\theta$ and $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$, we have $2\sin \theta \cos \theta = 3\sin \theta - 4\sin^3 \theta$, and so 3- $4\sin^2\theta = 2\cos\theta$ which yields a quadratic equation $4\cos^2\theta - 2\cos\theta - 1 = 0$. Solving this equation for $\cos \theta$, we obtain the positive value of $\cos \theta = \frac{-1+\sqrt{5}}{4}$.

Answer: (B)

30. Evaluate the product: $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}$

$$(A)\frac{1}{9}$$

(B)
$$\frac{1}{16}$$

(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{16}$ (C) $\frac{1}{32}$ (D) $\frac{1}{64}$

(D)
$$\frac{1}{64}$$

(E) NOTA

Solution: $\sin 10^{\circ} \sin 70^{\circ} \sin 30^{\circ} \sin 50^{\circ}$

$$=\frac{\sin\!10^{\circ}\sin20^{\circ}\sin30^{\circ}\sin40^{\circ}\sin50^{\circ}\sin60^{\circ}\sin70^{\circ}\sin80^{\circ}}{\sin\!20^{\circ}\sin40^{\circ}\sin60^{\circ}\sin80^{\circ}}$$

 $= \frac{\sin 10^{\circ} \sin 20^{\circ} \sin 30^{\circ} \sin 40^{\circ} \cos 40^{\circ} \cos 30^{\circ} \cos 20^{\circ} \cos 10^{\circ}}{2 \sin 10^{\circ} \cos 10^{\circ} \cdot 2 \sin 20^{\circ} \cos 20^{\circ} \cdot 2 \sin 30^{\circ} \cos 30^{\circ} \cdot 2 \sin 40^{\circ} \cos 40^{\circ}}$

$$=\frac{1}{16}$$

Answer: (B)